Thyrotropin Receptor: Allosteric Modulators Illuminate Intramolecular Signaling Mechanisms at the Interface of Ecto- and Transmembrane Domain

Mol Pharmacol. 2019 Oct;96(4):452-462. doi: 10.1124/mol.119.116947. Epub 2019 Aug 9.

Abstract

The large TSH-bound ectodomain of the thyrotropin receptor (TSHR) activates the transmembrane domain (TMD) indirectly via an internal agonist (IA). The ectodomain/TMD interface consists of a converging helix, a Cys-Cys-bridge-linked IA, and extracellular loops (ECL). To investigate the intramolecular course of molecular activation, especially details of the indirect activation, we narrowed down allosteric inhibition sites of negative allosteric modulator (NAM) by mutagenesis, homology modeling, and competition studies with positive allosteric modulator (PAM). From the inhibitory effects of NAM S37a on: 1) chimeras with swapped ectodomain, 2) stepwise N-terminal truncations, 3) distinct constitutively active mutations distributed across the hinge region and ECL, but not across the TMD, we conclude that S37a binds at the ectodomain/TMD interface, between the converging helix, ECL1, and the IA. This is also supported by the noncompetitive inhibition of PAM-C2-activation by S37a in the TSHR-TMD construct lacking the ectodomain. Mutagenesis studies on the IA and ECL were guided by our refined model of the ectodomain/TMD interface and indicate an interaction with the TSHR-specific residues E404 (preceding IA) and H478 (ECL1). At this new allosteric interaction site, NAM S37a blocks both TSH- and PAM-induced activation of the TSHR. Our refined models, mutations, and new allosteric binding pocket helped us to gain more detailed insights into the intramolecular course of TSHR activation at the ectodomain/TMD interface, including the delocalization of the converging helix and rearrangement of the conformation of IA. These changes are embedded between the ECL and cooperatively trigger active conformations of TMD. SIGNIFICANCE STATEMENT: The intramolecular activation mechanisms of the TSHR appear to be distinct from those of other G protein-coupled receptors, as the TSHR has a uniquely large N-terminal ectodomain that includes the hormone binding site and an internal agonist sequence. We present new molecular and structural insights into the interface between ectodomain and transmembrane domain in the TSHR, as well as the transfer of activation to the transmembrane domain. This knowledge is critical for understanding activation or inhibition of the receptor by allosteric ligands. We have identified a new allosteric antagonist binding pocket that is located exactly at this interface and possesses specific features that may allow the generation of potent highly TSHR-selective drugs, of potential value for the treatment of Graves' orbitopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Gene Expression Regulation
  • HEK293 Cells
  • Humans
  • Models, Molecular
  • Mutation
  • Protein Domains
  • Receptors, Thyrotropin / chemistry*
  • Receptors, Thyrotropin / genetics
  • Receptors, Thyrotropin / metabolism*
  • Sequence Homology, Amino Acid
  • Signal Transduction
  • Thyrotropin / metabolism*

Substances

  • Receptors, Thyrotropin
  • TSHR protein, human
  • Thyrotropin