Adult neurogenesis is a dynamic process by which newly activated neural stem cells (NSCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate new neurons, which integrate into an existing neural circuit and contribute to specific hippocampal functions. Importantly, adult neurogenesis is highly susceptible to environmental stimuli, which allows for activity-dependent regulation of various cognitive functions. A vast range of neural circuits from various brain regions orchestrates these complex cognitive functions. It is therefore important to understand how specific neural circuits regulate adult neurogenesis. Here, we describe a protocol to manipulate neural circuit activity using designer receptor exclusively activated by designer drugs (DREADDs) technology that regulates NSCs and newborn progeny in rodents. This comprehensive protocol includes stereotaxic injection of viral particles, chemogenetic stimulation of specific neural circuits, thymidine analog administration, tissue processing, immunofluorescence labeling, confocal imaging, and imaging analysis of various stages of neural precursor cells. This protocol provides detailed instructions on antigen retrieval techniques used to visualize NSCs and their progeny and describes a simple, yet effective way to modulate brain circuits using clozapine N-oxide (CNO) or CNO-containing drinking water and DREADDs-expressing viruses. The strength of this protocol lies in its adaptability to study a diverse range of neural circuits that influence adult neurogenesis derived from NSCs.