Genomic instability could be a beneficial predictor for anthracycline or taxane chemotherapy. We interrogated 188 DNA repair genes in the METABRIC cohort (n = 1980) to identify genes that influence overall survival (OS). We then evaluated the clinicopathological significance of ERCC1 in early stage breast cancer (BC) (mRNA expression (n = 4640) and protein level, n = 1650 (test set), and n = 252 (validation)) and in locally advanced BC (LABC) (mRNA expression, test set (n = 2340) and validation (TOP clinical trial cohort, n = 120); and protein level (n = 120)). In the multivariate model, ERCC1 was independently associated with OS in the METABRIC cohort. In ER+ tumours, low ERCC1 transcript or protein level was associated with increased distant relapse risk (DRR). In ER-tumours, low ERCC1 transcript or protein level was linked to decreased DRR, especially in patients who received anthracycline chemotherapy. In LABC patients who received neoadjuvant anthracycline, low ERCC1 transcript was associated with higher pCR (pathological complete response) and decreased DRR. However, in patients with ER-tumours who received additional neoadjuvant taxane, high ERCC1 transcript was associated with a higher pCR and decreased DRR. High ERCC1 transcript was also linked to decreased DRR in ER+ LABC that received additional neoadjuvant taxane. ERCC1 based stratification is an attractive strategy for breast cancers.
Keywords: ERCC1; anthracycline resistance; taxane sensitivity.