Purpose: Irinotecan and topotecan are used to treat a variety of different cancers. However, they have limitations, including chemical instability and severe side effects. To overcome these limitations, we developed the clinical indenoisoquinolines: LMP400 (indotecan), LMP776 (indimitecan), and LMP744. The purpose of the study is to build the molecular rationale for phase II clinical trials.
Experimental design: CellMinerCDB (http://discover.nci.nih.gov/cellminercdb) was used to mine the cancer cell lines genomic databases. The causality of Schlafen11 (SLFN11) was validated in isogenic cell lines. Because topoisomerase I (TOP1)-mediated replication DNA damage is repaired by homologous recombination (HR), we tested the "synthetic lethality" of HR-deficient (HRD) cells. Survival and cell-cycle alterations were performed after drug treatments in isogenic DT40, DLD1, and OVCAR cell lines with BRCA1, BRCA2, or PALB2 deficiencies and in organoids cultured from prostate cancer patient-derived xenografts with BRCA2 loss. We also used an ovarian orthotopic allograft model with BRCA1 loss to validate the efficacy of LMP400 and olaparib combination.
Results: CellMinerCDB reveals that SLFN11, which kills cells undergoing replicative stress, is a dominant drug determinant to the clinical indenoisoquinolines. In addition, BRCA1-, BRCA2-, and PALB2-deficient cells were hypersensitive to the indenoisoquinolines. All 3 clinical indenoisoquinolines were also synergistic with olaparib, especially in the HRD cells. The synergy between LMP400 and olaparib was confirmed in the orthotopic allograft model harboring BRCA1 loss.
Conclusions: Our results provide a rationale for molecularly designed clinical trials with the indenoisoquinolines as single agents and in combination with PARP inhibitors in HRD cancers expressing SLFN11.
©2019 American Association for Cancer Research.