Objective: The assessment of written medical examinations is a tedious and expensive process, requiring significant amounts of time from medical experts. Our objective was to develop a natural language processing (NLP) system that can expedite the assessment of unstructured answers in medical examinations by automatically identifying relevant concepts in the examinee responses.
Materials and methods: Our NLP system, Intelligent Clinical Text Evaluator (INCITE), is semi-supervised in nature. Learning from a limited set of fully annotated examples, it sequentially applies a series of customized text comparison and similarity functions to determine if a text span represents an entry in a given reference standard. Combinations of fuzzy matching and set intersection-based methods capture inexact matches and also fragmented concepts. Customizable, dynamic similarity-based matching thresholds allow the system to be tailored for examinee responses of different lengths.
Results: INCITE achieved an average F1-score of 0.89 (precision = 0.87, recall = 0.91) against human annotations over held-out evaluation data. Fuzzy text matching, dynamic thresholding and the incorporation of supervision using annotated data resulted in the biggest jumps in performances.
Discussion: Long and non-standard expressions are difficult for INCITE to detect, but the problem is mitigated by the use of dynamic thresholding (i.e., varying the similarity threshold for a text span to be considered a match). Annotation variations within exams and disagreements between annotators were the primary causes for false positives. Small amounts of annotated data can significantly improve system performance.
Conclusions: The high performance and interpretability of INCITE will likely significantly aid the assessment process and also help mitigate the impact of manual assessment inconsistencies.
Keywords: Automated assessment; Clinical notes; Natural language processing; Text mining.
Copyright © 2019 Elsevier Inc. All rights reserved.