Under an emission scenario where atmospheric greenhouse gas concentrations are stabilized, previous work suggests that on centennial time scales the rate of global temperature increases would steady at significantly lower rates than those of the 21st century. As climate change is not globally uniform, regional differences in achieving this steady rate of warming can be expected. Here, we define a "Time of Steady Change" (TSC) as the time of reaching this steady rate of warming, and we present a method for estimating TSC with the use of General Circulation Model experiments run under greenhouse gas stabilization scenarios. We find that TSC occurs latest in low latitudes and in the Arctic, despite these areas steadying at very different absolute warming rates. These broad patterns are robust across multiple General Circulation Model ensembles and alternative definitions of TSC. These results indicate large regional differences in the trajectory of climate change in coming centuries.
Keywords: Climate Change; Geographic Variability; Stabilized concentrations; Warming rates.