Three-dimensional (3D) printing of biological material, or 3D bioprinting, is a rapidly expanding field with interesting applications in tissue engineering and regenerative medicine. Bioprinters use cells and biocompatible materials as an ink (bioink) to build 3D structures representative of organs and tissues, in a controlled manner and with micrometric resolution. Human embryonic (hESCs) and induced (hiPSCs) pluripotent stem cells are ideally able to provide all cell types found in the human body. A limited, but growing, number of recent reports suggest that cells derived by differentiation of hESCs and hiPSCs can be used as building blocks in bioprinted human 3D models, reproducing the cellular variety and cytoarchitecture of real tissues. In this review we will illustrate these examples, which include hepatic, cardiac, vascular, corneal and cartilage tissues, and discuss challenges and opportunities of bioprinting more demanding cell types, such as neurons, obtained from human pluripotent stem cells.
Keywords: 3D; Bioink; Bioprinting; Embryonic stem cells; Induced Pluripotent Stem Cells; Organoid.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.