In this paper, we report the synthesis and characterization of fluorinated derivatives of naphthofluorescein (NF), a fluorescent pH-sensitive probe that can be used for functional Cerenkov imaging. The compounds were prepared using electrophilic fluorination with dilute fluorine gas under acidic conditions. The fluorination of the NF molecule occurred in the ortho positions to the hydroxyl moiety, producing mono-, di-, and tri-substituted derivatives. The properties of the fluorinated naphthofluoresceins were similar to the parent compound, retaining pH sensitivity and fluorescence capability, but showed a more acidic pKa with increasing fluorination degree and a bathochromic shift in both absorbance and fluorescence. NF and its two major fluorinated derivatives were shown to attenuate Cerenkov radiation in the basic form; the greatest attenuation was observed at wavelengths coinciding with the absorption maxima. NF also showed potential as a Cerenkov Radiation Energy Transfer (CRET) probe. Fluorinated naphthofluoresceins provide a new family of molecular imaging probes for the detection of pH in tissue and organs by using a combination of PET and Cerenkov imaging.
Keywords: CRET; Cerenkov imaging; electrophilic fluorination; naphthofluorescein; pH imaging.