Purpose: To introduce a new method for in-phase zero TE (ipZTE) musculoskeletal MR imaging.
Methods: ZTE is a 3D radial imaging method, which is sensitive to chemical shift off-resonance signal interference, especially around fat-water tissue interfaces. The ipZTE method addresses this fat-water chemical shift artifact by acquiring each 3D radial spoke at least twice with varying readout gradient amplitude and hence varying effective sampling time. Using k-space-based chemical shift decomposition, the acquired data is then reconstructed into an in-phase ZTE image and an out-of-phase disturbance.
Results: The ipZTE method was tested for knee, pelvis, brain, and whole-body. The obtained images demonstrate exceptional soft-tissue uniformity free from out-of-phase disturbances apparent in the original ZTE images. The chemical shift decomposition was found to improve SNR at the cost of reduced image resolution.
Conclusion: The ipZTE method can be used as an averaging mechanism to eliminate fat-water chemical shift artifacts and improve SNR. The method is expected to improve ZTE-based musculoskeletal imaging and pseudo CT conversion as required for PET/MR attenuation correction and MR-guided radiation therapy planning.
Keywords: ZTE; artifact; chemical shift; correction; in-phase; musculoskeletal.
© 2019 International Society for Magnetic Resonance in Medicine.