The multifunctional protein Transglutaminase type 2, is associated with cancer epithelial mesenchymal transition, invasiveness, stemness and drugs resistance. Several variant isoforms and non-coding RNAs are present in cancer and this report explored the expression of these transcripts of the TGM2 gene in cancer cell lines after induction with all-trans retinoic acid. The expression of truncated variants along with two long non-coding RNAs, was demonstrated. One of these is coded from the first intron and the Last Exon Variant is constituted by a sequence corresponding to the last three exons and the 3'UTR. Analysis of ChIP-seq data, from ENCODE project, highlighted factors interacting with intronic sequences, which could interfere with the progression of RNApol II at checkpoints, during the elongation process. Some relevant transcription factors, bound in an ATRA-dependent way, were found by RNA immunoprecipitation, notably GATA3 mainly enriched to Last Exon Variant non-coding RNA. The involvement of NMD in the regulation of the ratio among these transcripts was observed, as the prevalent recovering of Last Exon Variant to phUPF1-complexes, with decrease of the binding towards other selective targets. This study contributes to identify molecular mechanisms regulating the ratio among the variants and improves the knowledge about regulatory roles of the non-coding RNAs of the TGM2 gene.
Keywords: GATA3; Non-coding RNA; Retinoic acid; Transcriptional variants; Transglutaminase type 2.