Protosappanin-A (PrA) and oleanolic acid (OA), which are important effective ingredients isolated from Caesalpinia sappan L., exhibit therapeutic potential in multiple diseases. This study focused on exploring the mechanisms of PrA and OA function in podocyte injury. An in vitro model of podocyte injury was induced by the sC5b-9 complex and assays such as cell viability, apoptosis, immunofluorescence, quantitative real-time polymerase chain reaction, and western blot were performed to further investigate the effects and mechanisms of PrA and OA in podocyte injury. The models of podocyte injury were verified to be successful as seen through significantly decreased levels of nephrin, podocin, and CD2AP and increased level of desmin. The sC5b-9-induced podocyte apoptosis was inhibited in injured podocytes treated with PrA and OA, accompanied by increased protein levels of nephrin, podocin, CD2AP, and Bcl2 and decreased levels of desmin and Bax. The p-AKT/p-mTOR levels were also reduced by treatment of PrA and OA while AKT/mTOR was unaltered. Further, the effects of PrA and OA on injured podocytes were similar to that of LY294002 (a PI3K-AKT inhibitor). PrA and OA were also seen to inhibit podocyte apoptosis and p-AKT/p-mTOR levels induced by IGF-1 (a PI3K-AKT activator). Our data demonstrate that PrA and OA can protect podocytes from injury or apoptosis, which may occur through inhibition of the abnormal activation of AKT-mTOR signaling.
Keywords: AKT-mTOR pathway; LY294002/IGF-1; apoptosis/proliferation; podocyte injury; protosappanin-A/oleanolic acid.
© 2019 The Authors. Cell Biology International published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.