Hydrogen sulfide (H2S), as an environmental gas pollutant, has harmful effects on many tissues and organs, including myocardium. However, the underlying mechanisms of H2S-induced myocardia toxicity remain poorly understood. The present study was designed to investigate the effect of H2S on myocardia injury in broilers from the perspective of apoptosis. 30 ppm H2S was administered in the broiler chamber for 2, 4 and 6 week, respectively, and the myocardial samples in control groups and H2S groups were collected immediately after euthanized broilers. Transmission electron microscope, test kits, qRT-PCR and western blot were performed. Results showed that H2S exposure decreased the activities of catalase (CAT) and total antioxidant capability (T-AOC), whereas the content of hydrogen peroxide (H2O2) and the activity of inducible nitric oxide synthase (iNOS) enhanced. Besides, we found the excessive expression of mitochondrial fission genes (Drp1 and Mff) by H2S, the dynamic balance of mitochondrial fission and fusion is destroyed. Furthermore, the levels of pro-apoptotic gene (including CytC, Cas3, Cas8, Cas9, TNF-α and Bax) increased after H2S exposure, as well as the expression level of anti-apoptotic gene bcl-2 decreased. At the same time, the activities of ATPase (including Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) weakened under H2S exposure. Therefore, we conclude that H2S induced oxidative stress and then leaded to excessive mitochondrial fission, which involved in apoptosis and damage broiler myocardia.
Keywords: Apoptosis; Broiler myocardia; Hydrogen sulfide; Mitochondrial dynamics; Oxidative stress.
Copyright © 2019 Elsevier Inc. All rights reserved.