Obtaining higher amount of final sugars with low cellulase dosage has great economic benefits for the industrial biorefinery of lignocellulosic biomass. The optimization of accessory enzymes and additives were performed using single factor and orthogonal experiment firstly, after that, fed-batch strategy was applied to enhance the high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse (SCB). A novel enzymatic hydrolysis procedure with 22% (w/v) substrate content and cellulase dosage of only 4 FPU/g dry biomass (DM) was developed, after digested for 48 h, the achieved glucose titer, yield and productivity were 122 g/L, 80% and 2.54 g L-1 h-1, respectively. Results obtained in this study indicated a potential finding for the industrial application of lignocellulosic biomass.
Keywords: Accessory enzymes; Additives; Enzymatic hydrolysis; High-solids; Lignocellulosic biomass.
Copyright © 2019 Elsevier Ltd. All rights reserved.