Simulative analysis in competitive sports can provide prospective insights, which can help improve the performance of players in future matches. However, adequately simulating the complex competition process and effectively explaining the simulation result to domain experts are typically challenging. This work presents a design study to address these challenges in table tennis. We propose a well-established hybrid second-order Markov chain model to characterize and simulate the competition process in table tennis. Compared with existing methods, our approach is the first to support the effective simulation of tactics, which represent high-level competition strategies in table tennis. Furthermore, we introduce a visual analytics system called Tac-Simur based on the proposed model for simulative visual analytics. Tac-Simur enables users to easily navigate different players and their tactics based on their respective performance in matches to identify the player and the tactics of interest for further analysis. Then, users can utilize the system to interactively explore diverse simulation tasks and visually explain the simulation results. The effectiveness and usefulness of this work are demonstrated by two case studies, in which domain experts utilize Tac-Simur to find interesting and valuable insights. The domain experts also provide positive feedback on the usability of Tac-Simur. Our work can be extended to other similar sports such as tennis and badminton.