Combination value of diffusion-weighted imaging and dynamic susceptibility contrast-enhanced MRI in astrocytoma grading and correlation with GFAP, Topoisomerase IIα and MGMT

Oncol Lett. 2019 Sep;18(3):2763-2770. doi: 10.3892/ol.2019.10656. Epub 2019 Jul 24.

Abstract

The present study aimed to investigate the value of diffusion-weighted imaging (DWI) combined with dynamic susceptibility contrast-enhanced (DSC) magnetic resonance imaging (MRI) scans in astrocytoma grading, and correlated MRI scan parameters of values of apparent diffusion coefficient (ADC) and relative cereberal blood volume (rCBV) with the immunohistochemical (IHC) indices of glial fibrillary acidic protein (GFAP), topoisomerase IIα (Topo IIα) and O 6-methylguanine-DNA methyltransferase (MGMT). A total of 123 patients with pathologically confirmed astrocytomas of differing grades underwent DWI and DSC scans. The values of the ADC and relative cerebral blood volume rCBV were compared with the grade II-IV astrocytomas. Receiver operating characteristic curves were used to compare astrocytoma grading efficiency of ADC, rCBV and the combination of the two values. The parameters of ADC and rCBV with GFAP, Topo IIα and MGMT indices were then correlated. The differences in ADC values were significant between the grades II, III and IV astrocytomas, and the rCBV values for grades II, III and IV were also significant. The combination of DWI and DSC demonstrated the highest values for area under curve in identifying grades II and III, and identifying grades III and IV, respectively. GFAP displayed a positive correlation with ADC and a negative correlation with rCBV. Topo IIα exhibited a negative correlation with ADC, and a positive correlation with rCBV. No correlation was observed between MGMT and ADC or rCBV. The combined application of DWI and DSC may increase astrocytoma grading accuracy. Values of ADC and rCBV exhibit certain correlations with IHC indices, and may predict degree of malignancy of astrocytoma.

Keywords: astrocytoma grading; diffusion weighted imaging; dynamic susceptibility contrast-enhanced; immunohistochemistry.