In Situ Growth of MoS2 Nanosheet Arrays and TS2 (T = Fe, Co, and Ni) Nanocubes onto Molybdate for Efficient Oxygen Evolution Reaction and Improved Hydrogen Evolution Reaction

ACS Omega. 2018 Jan 17;3(1):464-471. doi: 10.1021/acsomega.7b01965. eCollection 2018 Jan 31.

Abstract

Rationally designing efficient and low-price bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are vitally important to bring solar/electrical-to-hydrogen energy conversion processes into reality. Herein, we report on a synthetic method that leads to an in situ growth of ultrathin MoS2 nanosheets and transition metal disulfide nanocubes onto the surface of Fe1/3Co1/3Ni1/3MoO4 nanorods for the first time. Such hybrids are found to serve as a bifunctional electrocatalyst with high activities for OER and HER, as represented by an impressive anodic and cathodic current density of 10 mA cm-2 at 1.53 and -0.25 V, respectively. More importantly, the performance for OER is even better than that of IrO2, the conventional noble metal electrocatalyst. These striking observations were interpreted in terms of the combination of strongly synergistic effect of multimetal components, large amount of exposed active site, and superaerophobia. The present methodology has been confirmed universal for synthesizing other molybdate solid solutions, which would open up new possibilities for designing novel non-noble bifunctional electrocatalysts for OER and HER.