The presence of highly modifiable chemical functional groups, abundance of functional groups, and their biological origin make proteins an important class of biomaterials from a fundamental science and applied engineering perspective. Hence, the utilization of proteins from the animal rendering industry (animal protein, AP) for high-value, nonfeed, and nonfertilizer applications is intensely pursued. Although this leads to the exploration of protein-derived plastics as a plausible alternative, the proposed methods are energy-intensive and not based on protein in its native form, which leads to high processing and production costs. Here, we propose, for the first time, novel pathways to develop engineered hybrid systems utilizing AP in its native form and epoxy resins with mechanical properties ranging from toughened thermosets to elastic epoxy-based systems. Furthermore, we demonstrate the capability to engineer the properties of epoxy-AP hybrids from high-strength hybrids to elastic films through controlling the interaction, hydrophilicity, as well as the extent of cross-linking and network density. Through the facile introduction of cochemicals, a sevenfold increase in the mechanical properties of the conventional epoxy-AP hybrid is achieved. Similarly, because of better compatibility afforded by the similar hydrophilicity, AP demonstrated higher cross-linking capability with a water-soluble epoxy (WEP) matrix, resulting in an elastic WEP-AP hybrid without any external aid.