CdSe Quantum Dots/g-C3N4 Heterostructure for Efficient H2 Production under Visible Light Irradiation

ACS Omega. 2018 Dec 19;3(12):17762-17769. doi: 10.1021/acsomega.8b02585. eCollection 2018 Dec 31.

Abstract

Novel photocatalysts -CdSe quantum dots (QDs)/g-C3N4- were successfully constructed. The structure, chemical composition, and optical properties of the prepared samples were investigated via a series of characterization techniques. The results indicated that CdSe QDs/g-C3N4 photocatalysts exhibited remarkably enhanced photocatalytic activity for visible-light-induced H2 evolution compared to pristine g-C3N4 and CdSe QDs and addition of 13.6 wt % CdSe QDs into the composite photocatalyst generated the highest H2 production rate. The enhanced photocatalytic performance of CdSe QDs/g-C3N4 can be attributed to the synergistic effects of excellent visible absorption and high charge separation efficiency from the heterostructure. This work could not only provide a facile method to fabricate semiconductor QDs-modified g-C3N4 photocatalysts but also contribute to the design for heterostructures.