1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-boronic Esters Using Photoredox Catalysis

J Am Chem Soc. 2019 Sep 11;141(36):14104-14109. doi: 10.1021/jacs.9b07564. Epub 2019 Sep 3.

Abstract

1,2-Bis-boronic esters are versatile intermediates that enable the rapid elaboration of simple alkene precursors. Previous reports on their selective mono-functionalization have targeted the most accessible position, retaining the more hindered secondary boronic ester. In contrast, we have found that photoredox-catalyzed mono-deboronation generates primary β-boryl radicals that undergo rapid 1,2-boron shift to form thermodynamically favored secondary radicals, allowing for selective transformation of the more hindered boronic ester. The pivotal 1,2-boron shift, which has been demonstrated to be stereoretentive, enables access to a wide range of functionalized boronic esters and has been applied to highly diastereoselective fragmentation and transannular cyclization reactions. Furthermore, its generality has been shown in a radical cascade reaction with an allylboronic ester.

Publication types

  • Research Support, Non-U.S. Gov't