Background: Myocardial T1 and T2 mapping are reliable diagnostic markers for the detection and follow up of acute myocarditis. The aim of this study was to compare the diagnostic performance of current mapping measurement approaches to differentiate between myocarditis patients and healthy individuals.
Methods: Fifty patients with clinically defined acute myocarditis and 30 healthy controls underwent cardiovascular magnetic resonance (CMR). Myocardial T1 relaxation times, T2 relaxation times, left ventricular (LV) function, T2 ratio, early gadolinium enhancement ratio, and presence of late gadolinium enhancement (LGE) were analysed. Native T1 and T2 relaxation times, as well as extracellular volume fraction (ECV) were measured for the entire LV myocardium (global), within the midventricular short axis slice (mSAX), within the midventricular septal wall (ConSept), and within the remote myocardium (remote). Receiver operating characteristics analysis was performed to compare diagnostic performance.
Results: All measurement approaches revealed significantly higher native T1 and T2 relaxation times as well as ECV values in patients compared to healthy controls (p < 0.05 for all parameters). The global measurement approach showed highest diagnostic performance regarding all mapping parameters (AUCs, native T1: 0.903, T2: 0.847, ECV: 0.731). Direct comparison of the different measurement approaches revealed significant differences in diagnostic performance between the global and the remote approach regarding T1 relaxation times and ECV (p = 0.001 and p = 0.002 respectively). Further, the global measurement approach revealed significantly higher T1 relaxation times compared to the ConSept approach (AUCs: 0.903 vs. 0.783; p = 0.003) and nearly significant differences compared to the mSAX approach (AUC: 0.850; p = 0.051). T2 relaxation times showed no significant differences between all measurement approaches (p > 0.050 for all parameters).
Conclusions: Native T1 and T2 mapping allow for accurate detection of acute myocarditis irrespective of the measurement approach used. Even measurements performed exclusively within remote myocardium allow for reliable detection of acute myocarditis, demonstrating diffuse involvement of disease despite a mostly regional or patchy distribution pattern of visible pathologies. The global measurement approach provides the overall best diagnostic performance in acute myocarditis for both T1 and T2 mapping.
Keywords: Accuracy; ECV; Mapping; Measurement approach; Myocarditis.