Improvements in the sensitivity, content, and throughput of microscopy, in the depth and throughput of single-cell sequencing approaches, and in computational and modeling tools for data integration have created a portfolio of methods for building spatiotemporal cell atlases. Challenges in this fast-moving field include optimizing experimental conditions to allow a holistic view of tissues, extending molecular analysis across multiple timescales, and developing new tools for 1) managing large data sets, 2) extracting patterns and correlation from these data, and 3) integrating and visualizing data and derived results in an informative way. The utility of these tools and atlases for the broader scientific community will be accelerated through a commitment to findable, accessible, interoperable, and reusable data and tool sharing principles that can be facilitated through coordination and collaboration between programs working in this space.