Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater

ACS Appl Mater Interfaces. 2019 Sep 25;11(38):35005-35014. doi: 10.1021/acsami.9b12806. Epub 2019 Sep 13.

Abstract

Nanostructured photothermal membranes hold great potential for solar-driven seawater desalination; however, their pragmatic applications are often limited by substantial salt accumulation. To solve this issue, we have designed and prepared flexible and washable carbon-nanotube-embedded polyacrylonitrile nonwoven fabrics by a simple electrospinning route. The wet fabric exhibits a strong photoabsorption in a wide spectral range (350-2500 nm), and it has a photoabsorption efficiency of 90.8%. When coated onto a polystyrene foam, the fabric shows a high seawater evaporation rate of 1.44 kg m-2 h-1 under simulated sunlight irradiation (1.0 kW m-2). With a high concentration of simulated seawater as the model, the accumulation of solid salts can be clearly observed on the surface of the fabric, resulting in a severe decay of the evaporation rate. These salts can be effortlessly washed away from the fabric through a plain handwashing process. The washing process has a negligible influence on the morphology, photoabsorption, and evaporation performance of the fabric, demonstrating good durability. More importantly, a larger fabric can easily be fabricated, and the combination of washable fabrics with various parallel PS foams can facilitate the construction of large-scale outdoor evaporation devices, conferring the great potential for efficient desalination of seawater under natural sunlight.

Keywords: Electrospinning; Multiwalled carbon nanotubes; Photothermal fabric; Polyacrylonitrile; Solar-driven seawater desalination.