Klebsiella pneumoniae is an important human pathogen, able to accumulate and disseminate a variety of antimicrobial resistance genes. Resistance to colistin, one of the last therapeutic options for multi-drug-resistant bacteria, has been reported increasingly. Colistin-resistant K. pneumoniae (ColRKp) emerged in two hospitals in Rio de Janeiro state, Brazil in 2016. The aim of this study was to investigate if these ColRKp isolates were clonally related when compared between hospitals, to identify the molecular mechanisms of colistin resistance, and to describe other antimicrobial resistance genes carried by isolates. Twenty-three isolates were successively recovered, and the whole-genome sequence was analysed for 10, each of a different pulsed-field gel electrophoresis (PFGE) type. Although some PFGE clusters were found, none of them included isolates from both hospitals. Half of the isolates were assigned to CC258, three to ST152 and two to ST15. One isolate was pandrug resistant, one was extensively drug resistant, and the others were multi-drug resistant. Colistin resistance was related to mutations in mgrB, pmrB, phoQ and crrB. Eleven new mutations were found in these genes, including two nucleotide deletions in mgrB. All isolates were carbapenem resistant, and seven were associated with carbapenemase carriage (blaKPC-2 in six isolates and blaOXA-370 in one isolate). All isolates had a blaCTX-M, and two had a 16S ribosomal RNA methyltransferase encoding gene (armA and rmtB). ColRKp were composed of epidemic clones, but cross-dissemination between hospitals was not detected. Colistin resistance emerged with several novel mutations amid highly resistant strains, further restricting the number of drugs available and leading to pandrug resistance.
Keywords: Colistin resistance; Epidemic clones; Klebsiella pneumoniae; Multi-drug resistance; Pandrug resistance.
Copyright © 2019 Elsevier Ltd. All rights reserved.