Retrospective motion compensation for edited MR spectroscopic imaging

Neuroimage. 2019 Nov 15:202:116141. doi: 10.1016/j.neuroimage.2019.116141. Epub 2019 Aug 31.

Abstract

Edited magnetic resonance spectroscopic imaging (MRSI) is capable of mapping the distribution of low concentration metabolites such as gamma-aminobutyric acid (GABA) or and glutathione (GSH), but is prone to subtraction artifacts due to head motion or other instabilities. In this study, a retrospective motion compensation algorithm for edited MRSI is proposed. The algorithm identifies movement-affected signals by comparing residual water and lipid peaks between different transients recorded at the same point in k-space, and either phase corrects, replaces or removes affected spectra prior to spatial Fourier transformation. The method was tested on macromolecule-unsuppressed GABA-edited spin-echo MR spectroscopic imaging data acquired from 8 healthy adults scanned at 3T. Relative to non-motion compensated data sets, the motion compensated data had significantly less subtraction artifacts across subjects. The residual choline (Cho) peak in the spectrum (which is well resolved from as a different chemical shift from GABA and is completely absent in a spectrum without subtraction artifact) was used as a metric of motion artifact severity. The normalized Cho area was 5.14 times lower with motion compensation than without motion compensation. A 'removal-only' version of the technique is also shown to be promising in removing motion-corrupted artifacts in a GSH-edited MRSI acquisition acquired in 1 healthy subject. This study introduces a motion compensation technique and demonstrates that retrospective compensation in k-space is possible and significantly reduces the amount of subtraction artifacts in the resulting edited spectra.

Keywords: Brain; Editing; GABA; GSH; MEGA-PRESS; MRS; MRSI.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Algorithms
  • Artifacts
  • Brain / metabolism*
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • gamma-Aminobutyric Acid / metabolism

Substances

  • gamma-Aminobutyric Acid