Overgrinding of Portland cement brings excessive shrinkage and poor self-healing ability to concrete. In this paper, through the ultrasonic test and optical micrograph observation, the self-healing properties of concrete prepared by cement with different particle size distributions were studied. Besides, the effect of carbonation and continued hydration on self-healing of concrete was analyzed. Results show that, for the Portland cement containing more particles with the size 30~60 μm, the concrete could achieve a better self-healing ability of concrete at 28 days. For the two methods to characterize the self-healing properties of concrete, the ultrasonic test is more accurate in characterizing the self-healing of internal crack than optical micrograph observation. The autogenous self-healing of concrete is jointly affected by the continued hydration and carbonation. At 7 days and 30 days, the autogenous self-healing of concrete is mainly controlled by the continued hydration and carbonation, respectively. The cement particle size could affect the continued hydration by affecting un-hydrated cement content and the carbonation by affecting the Ca(OH)2 content. Therefore, a proper distribution of cement particle size, which brings a suitable amount of Ca(OH)2 and un-hydrated cement, could improve the self-healing ability of concrete.
Keywords: CaCO3 precipitation; PSD of cement; autogenous self-healing; continued hydration; ultrasonic test.