Jasmonates (JAs) play vital roles in regulating a range of plant growth and development processes including seed germination, seedling development, reproduction, formation and development of storage organs, and senescence. JAs are also involved in the regulation of plant responses to environmental stimuli. The biosynthesis of JAs takes place in three different subcellular compartments, namely, the chloroplast, peroxisome, and cytoplasm. JAs activate the expression of JA-responsive genes by degrading jasmonate zinc-finger-inflorescence meristem (Zim) domain (JAZ) repressors via the E3 ubiquitin-ligase Skp/Cullin/F-box protein CORONATINE INSENSITIVE1 (COI1) complex (SCFCOI1) by using 26S proteasome. Calcium, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and nitric oxide (NO) are involved in the regulation of the biosynthesis and signaling of JAs in plants. Among these signaling molecules, calcium is one of the most important within plant cells. In plants, intracellular calcium levels change in response to JAs, resulting in calcium signatures with temporal and spatial features. Calcium channels are involved in the generation of calcium signatures. Calcium sensors, including calmodulins (CaMs), CaM-like proteins (CMLs), calcineurin B-like proteins (CBLs), and calcium-dependent protein kinases (CDPKs), can act to regulate the biosynthesis and signaling of JAs.
Keywords: Calcium; Calcium sensors; JAs biosynthesis; JAs signaling.
Copyright © 2019 Elsevier B.V. All rights reserved.