Problems with carbon assimilate translocation from source organs to sink (grains) during ripening cause yield losses in rice (Oryza sativa L.), especially in high-sink-capacity varieties. We conducted a genetic analysis of traits related to such translocation by using recombinant inbred lines. Shoot weight (SW) of T65, a japonica parent, was retained from heading to late maturity, whereas that of DV85, an aus parent, was greater than that of T65 at 5 days after heading (DAH) and then decreased until 20 DAH. This difference was observed clearly under standard-fertilizer but not low-fertilizer conditions. Non-structural carbohydrate (NSC) contents in the parents showed a tendency similar to that for SW. QTL analysis revealed pleiotropic QTLs on chromosomes 5 and 10, probably by associations with heading date QTLs. A QTL associated with harvest index and NSC at 5 DAH was detected on chromosome 1. By considering the temporal changes of the traits, we found a QTL for decrease in SW on chromosome 11; the DV85 allele of this QTL facilitated assimilate translocation and suppressed biomass growth. A suggestive QTL for NSC decrease was located on chromosome 2. These QTLs could represent potential targets for controlling carbon assimilate translocation in breeding programs.
Keywords: QTL; genotyping-by-sequencing; rice; sink–source relationship; translocation.