Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems

Acc Chem Res. 2019 Oct 15;52(10):2841-2848. doi: 10.1021/acs.accounts.9b00386. Epub 2019 Sep 5.

Abstract

Carbon is central to the chemistry of life, and in addition to its fundamental roles as a static component of all major biomolecules spanning proteins, nucleic acids, sugars, and lipids, emerging evidence shows that small and transient carbon-based metabolites, termed reactive carbon species (RCS), are dynamic signaling/stress agents that can influence a variety of biological pathways. Recent examples include the identification of carbon monoxide (CO) as an ion channel blocker and endogenous formaldehyde (FA) as a one-carbon metabolic unit formed from the spontaneous degradation of dietary folate metabolites. These findings motivate the development of analytical tools for transient carbon species that can achieve high specificity and sensitivity to further investigate RCS signaling and stress pathways at the cell, tissue, and whole-organism levels. This Account summarizes work from our laboratory on the development of new chemical tools to monitor two important one-carbon RCS, CO and FA, through activity-based sensing (ABS), where we leverage the unique chemical reactivities of these small and transient analytes, rather than lock-and-key binding considerations, for selective detection. Classic inorganic/organometallic and organic transformations form the basis for this approach. For example, to distinguish CO from other biological diatomics of similar shape and size (e.g., nitric oxide and oxygen), we exploit palladium-mediated carbonylation as a synthetic method for CO sensing. The high selectivity of this carbonylation approach successfully enables imaging of dynamic changes in intracellular CO levels in live cells. Likewise, we apply the aza-Cope reaction for FA detection to provide high selectivity for this one-carbon unit over other larger biological aldehydes that are reactive electrophiles, such as acetaldehyde and methylglyoxal. By relying on an activity-based trigger as a design principle for small-molecule detection, this approach can be generalized to create a toolbox of selective FA imaging reagents, as illustrated by a broad range of FA probes spanning turn-on and ratiometric fluorescence imaging, positron emission tomography imaging, and chemiluminescence imaging modalities. Moreover, these chemical tools have revealed new one-carbon biology through the identification of folate as a dietary source of FA and alcohol dehydrogenase 5 as a target for FA metabolism. Indeed, these selective RCS detection methods have been expanded to a wider array of imaging platforms, such as metal-complex-based time-gated luminescence and materials-based imaging scaffolds (e.g., nanotubes, nanoparticles, and carbon dots), with modalities extending to Raman and Rayleigh scattering readouts. This pursuit of leveraging selective chemical reactivity to develop highly specific ABS probes for imaging of RCS provides not only practical tools for deciphering RCS-dependent biology but also a general design platform for developing ABS probes for a broader range of biological analytes encompassing elements across the periodic table.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Carbon Monoxide / metabolism*
  • Formaldehyde / metabolism*
  • Humans
  • Molecular Probe Techniques*

Substances

  • Formaldehyde
  • Carbon Monoxide