The search for metal-free catalysts for oxygen reduction reactions (ORRs) in energy storage and conversion devices, such as fuel cells and metal-air batteries, is highly desirable but challenging. Here, we have designed and synthesized controllable 3D nitrogen and phosphorous co-doped holey graphene foams (N,P-HGFs) as a high-efficiency ORR catalyst through structural regulation and electronic engineering. The obtained catalyst shows a half-wave potential of 0.865 V in alkaline electrolytes. It is found that Zn-air batteries with the N,P-HGFs-1000 air electrode exhibit excellent discharge performance and durability. Our study suggests that the remarkable ORR performance of N,P co-doped graphene is mainly due to the graphite N-C-P structure, where an enhanced charge density and increased HOMO energy level are confirmed by both experimental results and theoretical density-functional theory calculations.