The degree of spatial coherence, as basic characteristics of the radiation, becomes an important guide to evaluate the performance of X-rays from newly introduced advanced light sources including the X-ray free electron laser (XFEL). Often the modification of the X-ray wavefronts to fulfill various applications is necessary, but also there is the need to preserve its coherence property. However, experimental investigation directly comparing the coherence property of focused X-ray radiations with the unmodified ones has not been available. We have performed Young's double-slit experiments by recording diffraction patterns both from slit apertures for unfocused XFEL radiation and from pairs of Au nanoparticles for one-micron focused XFEL radiations. The results confirm that the degree of spatial coherence is preserved for well-built K-B focusing mirrors.