Control Room Operators' Cue Utilization Predicts Cognitive Resource Consumption During Regular Operational Tasks

Front Psychol. 2019 Aug 27:10:1967. doi: 10.3389/fpsyg.2019.01967. eCollection 2019.

Abstract

This study was designed to examine whether qualified practitioners' cue utilization is predictive of their sustained attention performance during regular operational tasks. Simulated laboratory studies have demonstrated that cue utilization differentiates cognitive load during process control tasks. However, it was previously unclear whether similar results would be demonstrated with qualified practitioners during familiar operational tasks. Australian distribution network service provider (DNSP) operators were classified with either higher or lower cue utilization based on an assessment of cue utilization within the context of electrical power distribution. During two, 20-min periods of operators' regular workdays, physiological measures of workload were assessed through changes in cerebral oxygenation in the prefrontal cortex compared to baseline, and through eye behavior metrics (fixation rates, saccade amplitude, and fixation dispersion). The results indicated that there were no statistically significant differences in eye behavior metrics, based on levels of cue utilization. However, as hypothesized, during both sessions, operators with higher cue utilization demonstrated smaller increases in cerebral oxygenation in the prefrontal cortex from baseline, compared to operators with lower cue utilization. The results are consistent with the proposition that operators with higher cue utilization experience lower cognitive load during periods of regular activity during their workday, compared to operators with lower cue utilization. Assessments of cue utilization could help identify operators who are better able to sustain attention during regular operational tasks, as well as those who may benefit from cue-based training interventions.

Keywords: attentional processes; eye movements; near-infrared spectroscopy; process control; sustained attention.