Monitoring and automatic tuning and stabilization of a 2×2 MZI optical switch for large-scale WDM switch networks

Opt Express. 2019 Aug 19;27(17):24747-24764. doi: 10.1364/OE.27.024747.

Abstract

Large-scale optical switch networks employ wavelength division multiplexing to expand and facilitate multiple input and outputs. Such networks can be implemented with the Mach-Zehnder interferometer (MZI) as the building block. A fully-loaded MZI switch, meaning one with two optical signals at its two inputs and one that is capable of simultaneously switching those inputs to its two outputs, reduces the number building blocks within the network, and as a result makes them more power and area efficient. However, for practical operation, such MZI switches need to be automatically controlled for overcoming fabrication and thermal variations. We present an interference-based monitoring method that enables automatically switching, tuning, and stabilizing of a fully-loaded 2×2 MZI optical switch and demonstrate a prototype on an SOI platform. Using the proposed device and off-the-shelf electronics, we demonstrate automatic tuning and stabilization of an MZI switch with 12.5 Gb/s and 25 Gb/s data rates and channel spacing as small as 1 nm.