Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles

J Appl Physiol (1985). 2019 Nov 1;127(5):1328-1337. doi: 10.1152/japplphysiol.00324.2019. Epub 2019 Sep 12.

Abstract

In the last 20 yr, near-infrared diffuse correlation spectroscopy (DCS) has been developed for providing a noninvasive estimate of microvascular blood flow (BF) as a BF index (BFi) in the human skin, muscle, breast, brain, and other tissue types. In this study, we proposed a new motion correction algorithm for DCS-derived BFi able to remove motion artifacts during cycling exercise. We tested this algorithm on DCS data collected during cycling exercise and demonstrated that DCS can be used to quantify muscle BFi during dynamic high-intensity exercise. In addition, we measured tissue regional oxygen metabolic rate (MRO2i) by combining frequency-domain multidistance near-infrared spectroscopy (FDNIRS) oximetry with DCS flow measures. Recreationally active subjects (n = 12; 31 ± 8 yr, 183 ± 4 cm, 79 ± 10 kg) pedaled at 80-100 revolutions/min until volitional fatigue with a work rate increase of 30 W every 4 min. Exercise intensity was normalized in each subject to the cycling power peak (Wpeak). Both rectus femoris BFi and MRO2i increased from 15% up to 75% Wpeak and then plateaued to the end of the exercise. During the recovery at 30 W cycling power, BFi remained almost constant, whereas MRO2i started to decrease. The BFi/MRO2i plateau was associated with the rising of the lactate concentration, indicating the progressive involvement of the anaerobic metabolism. These findings further highlight the utility of DCS and FDNIRS oximetry as effective, reproducible, and noninvasive techniques to assess muscle BFi and MRO2i in real time during a dynamic exercise such as cycling.NEW & NOTEWORTHY To the best of our knowledge, this study is the first to demonstrate that diffuse correlation spectroscopy in combination with frequency-domain near-infrared spectroscopy can monitor human quadriceps microvascular blood flow and oxygen metabolism with high temporal resolution during a cycling exercise. The optically measured parameters confirm the expected relationship between blood flow, muscle oxidative metabolism, and lactate production during exercise.

Keywords: blood flow; diffuse correlation spectroscopy; exercise; muscle oxidative metabolism; near-infrared spectroscopy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Blood Flow Velocity / physiology*
  • Exercise / physiology*
  • Exercise Test / methods
  • Female
  • Humans
  • Male
  • Microvessels / physiology*
  • Muscle, Skeletal / blood supply
  • Muscle, Skeletal / physiology*
  • Oxygen Consumption / physiology
  • Regional Blood Flow / physiology*
  • Spectroscopy, Near-Infrared / methods