Hemoglobin (Hb) plays an important role in oxygen carriage for mammals, which is also a typical biomarker for certain diseases. Although numerous methods had been developed for the detection of Hb in red blood cells, analytical technology for the monitoring of low-abundance Hb in serum or plasma is still a challenge. Herein, persistent luminescence nanoparticles (PLNPs) with strong near-infrared (NIR) emission character behaving as a label-free probe for the highly sensitive and selective detection of Hb were developed. Further studies revealed that the sensing mechanism should be attributed to the Hb-induced dynamic quenching process. Moreover, the nanoprobe showed high selectivity to Hb against the common existing substances in human serum and a linear response to Hb ranging from 1 to 50 nM with an extremely high limit of detection (LOD) of 0.13 nM. Finally, applicability of the proposed probe for the detection of Hb in human serum samples was validated.
Keywords: Hemoglobin detection; Human serum sample; Label-free probe; Near-infrared emission; Persistent luminescence.
Copyright © 2019 Elsevier B.V. All rights reserved.