SETD5 Regulates Chromatin Methylation State and Preserves Global Transcriptional Fidelity during Brain Development and Neuronal Wiring

Neuron. 2019 Oct 23;104(2):271-289.e13. doi: 10.1016/j.neuron.2019.07.013. Epub 2019 Sep 9.

Abstract

Mutations in one SETD5 allele are genetic causes of intellectual disability and autistic spectrum disorders. However, the mechanisms by which SETD5 regulates brain development and function remain largely elusive. Herein, we found that Setd5 haploinsufficiency impairs the proliferative dynamics of neural progenitors and synaptic wiring of neurons, ultimately resulting in behavioral deficits in mice. Mechanistically, Setd5 inactivation in neural stem cells, zebrafish, and mice equally affects genome-wide levels of H3K36me3 on active gene bodies. Notably, we demonstrated that SETD5 directly deposits H3K36me3, which is essential to allow on-time RNA elongation dynamics. Hence, Setd5 gene loss leads to abnormal transcription, with impaired RNA maturation causing detrimental effects on gene integrity and splicing. These findings identify SETD5 as a fundamental epigenetic enzyme controlling the transcriptional landscape in neural progenitors and their derivatives and illuminate the molecular events that connect epigenetic defects with neuronal dysfunctions at the basis of related human diseases.

Keywords: SETD5; autism spectrum disorders; epigenetics; intellectual disability; neural development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal
  • Brain / embryology*
  • Brain / metabolism
  • Chromatin / metabolism*
  • Chromatin Immunoprecipitation Sequencing
  • Cognition
  • Epigenesis, Genetic
  • Gene Expression Regulation, Developmental / genetics*
  • Histone Code / genetics*
  • Histone Methyltransferases / genetics
  • Methyltransferases / genetics*
  • Methyltransferases / physiology
  • Mice
  • Mutation
  • Neural Stem Cells / metabolism
  • RNA Splicing / genetics
  • RNA-Seq
  • Social Behavior
  • Transcription Elongation, Genetic
  • Zebrafish
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / physiology*

Substances

  • Chromatin
  • Zebrafish Proteins
  • Histone Methyltransferases
  • Methyltransferases
  • SETD5 protein, mouse
  • Setd5 protein, zebrafish