Monolayer WSe2 exhibits luminescence arising from various types of exciton complexes due to strong many-body effects. Here, we demonstrate selective electrical excitation of positive and negative trions in van der Waals metal-insulator-semiconductor (MIS) heterostructure consisting of few-layer graphene (FLG), hexagonal boron nitride (hBN), and monolayer WSe2. Intentional unbalanced injection of electrons and holes is achieved via field-emission tunneling and electrostatic accumulation. The device exhibits planar electroluminescence from either positive trion X+ or negative trion X- depending on the bias conditions. We show that hBN serves as a tunneling barrier material allowing selective injection of electron or holes into WSe2 from FLG layer. Our observation offers prospects for hot carrier injection, trion manipulation, and on-chip excitonic devices based on two-dimensional semiconductors.
Keywords: Transition metal dichalcogenides; electroluminescence; field-emission tunneling; trion.