The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma

BMC Complement Altern Med. 2019 Sep 14;19(1):257. doi: 10.1186/s12906-019-2663-9.

Abstract

Background: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

Methods: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p < 0.05) was considered statistical significance.

Results: All extracts tested were not able to induce potent anti-proliferative effects. However, it was found that pancreatic ductal adenocarcinoma, PDAC (AsPC1, BxPC3 and SW1990) were the cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells.

Conclusion: These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.

Keywords: Clinacanthus nutans; Gemcitabine; Pancreatic ductal adenocarcinoma; Synergism.

MeSH terms

  • Acanthaceae / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Baculoviral IAP Repeat-Containing 3 Protein / genetics
  • Baculoviral IAP Repeat-Containing 3 Protein / metabolism
  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / physiopathology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Deoxycytidine / analogs & derivatives*
  • Deoxycytidine / pharmacology
  • Drug Synergism
  • Gemcitabine
  • Humans
  • Pancreatic Neoplasms / drug therapy
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / physiopathology*
  • Plant Extracts / pharmacology*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism

Substances

  • Antineoplastic Agents
  • Plant Extracts
  • Proto-Oncogene Proteins c-bcl-2
  • Deoxycytidine
  • BIRC3 protein, human
  • Baculoviral IAP Repeat-Containing 3 Protein
  • Gemcitabine