Chronic use of aspirin and related drugs to reduce cancer risk is limited by unwanted side effects. Thus, we assessed the efficacy associated with different dosing regimens of aspirin and naproxen. Azoxymethane (AOM)-rat colon cancer model was used to establish the pharmacodynamic efficacy of aspirin and naproxen under different dosing regimens. Colon tumors were induced in rats (36/group) by two weekly doses of AOM. At the early adenoma stage, rats were fed diets containing aspirin (700 and 1,400 ppm) or naproxen (200 and 400 ppm), either continuously, 1 week on/1 week off, or 3 weeks on/3 weeks off, or aspirin (2,800 ppm) 3 weeks on/3 weeks off. All rats were euthanized 48 weeks after AOM treatment and assessed for efficacy and biomarkers in tumor tissues. Administration of aspirin and naproxen produced no overt toxicities. Administration of different treatment regimens of both agents had significant inhibitory effects with clear dose-response effects. Aspirin suppressed colon adenocarcinoma multiplicity (both invasive and noninvasive) by 41% (P < 0.003) to 72% (P < 0.0001) and invasive colon adenocarcinomas by 67%-91% (P < 0.0001), depending on the treatment regimen. Naproxen doses of 200 and 400 ppm inhibited invasive adenocarcinoma multiplicity by 53%-88% (P < 0.0001), depending on the dosing regimen. Colonic tumor biomarker analysis revealed that proliferation (proliferating cell nuclear antigen and p21), apoptosis (p53 and Caspase-3), and proinflammatory mediators (IL1β and prostaglandin E2) were significantly correlated with the tumor inhibitory effects of aspirin and naproxen. Overall, our results suggest that intermittent dosing regimens with aspirin or naproxen demonstrated significant efficacy on the progression of adenomas to adenocarcinomas, without gastrointestinal toxicities.
©2019 American Association for Cancer Research.