Introduction: In this study we estimated the cost-effectiveness of adopting 3D Nonfluoroscopic Mapping Systems (NMSs) for catheter ablation (CA).
Methods: This study includes patients who underwent supraventricular tachycardia (SVT) CA and atrial fibrillation (AF) CA from 2007 to 2016. A comparison was conducted between a reference year (2007) and the respective years for the two types of procedure in which the maximum optimization of patients' exposure using NMSs was obtained. We compared the data of all SVT CA performed solely using fluoroscopy in 2007 (Group I) and all SVT CA procedures performed using fluoroscopy together with an NMS in 2011 (Group II). There was also an important comparison made between AF CA procedures performed in 2007 (Group III) and AF CA in 2012 (Group IV), where patients' treatment in both years included the use of an NMS but where the software and hardware versions of the NMS were different. Two cost-effectiveness analyses were carried out. The first method was based on the alpha value (AV): the AV is a monetary reference value of avoided unit of exposure and is expressed as $/mansievert. The second one was based on the value of a statistical life (VSL): the VSL does not represent the cost value of a person's life, but the amount that a community would be willing to pay to reduce the risk of a person's death. The costs estimated from these two methods were compared to the real additional cost of using an NMS during that type of procedure in our EP Lab.
Results: The use of NMS reduced the effective dose of about 2.3 mSv for SVT and 23.8 mSv for AF CA procedures. The use of NMS, applying directly AV or VSL values, was not cost-effective for SVT CA for the most countries, whereas the use of an NMS during an AF CA seemed to be cost-effective for most of them.
Conclusions: In our analysis the cost-effectiveness of the systematic use of NMSs strongly depended on the AV and VSL values considered. Nonetheless, the approach seemed to be cost-effective only during AF CA procedures.