RCSB Protein Data Bank: Enabling biomedical research and drug discovery

Protein Sci. 2020 Jan;29(1):52-65. doi: 10.1002/pro.3730. Epub 2019 Nov 29.

Abstract

Analyses of publicly available structural data reveal interesting insights into the impact of the three-dimensional (3D) structures of protein targets important for discovery of new drugs (e.g., G-protein-coupled receptors, voltage-gated ion channels, ligand-gated ion channels, transporters, and E3 ubiquitin ligases). The Protein Data Bank (PDB) archive currently holds > 155,000 atomic-level 3D structures of biomolecules experimentally determined using crystallography, nuclear magnetic resonance spectroscopy, and electron microscopy. The PDB was established in 1971 as the first open-access, digital-data resource in biology, and is now managed by the Worldwide PDB partnership (wwPDB; wwPDB.org). US PDB operations are the responsibility of the Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB). The RCSB PDB serves millions of RCSB.org users worldwide by delivering PDB data integrated with ∼40 external biodata resources, providing rich structural views of fundamental biology, biomedicine, and energy sciences. Recently published work showed that the PDB archival holdings facilitated discovery of ∼90% of the 210 new drugs approved by the US Food and Drug Administration 2010-2016. We review user-driven development of RCSB PDB services, examine growth of the PDB archive in terms of size and complexity, and present examples and opportunities for structure-guided drug discovery for challenging targets (e.g., integral membrane proteins).

Keywords: GPCR; Protein Data Bank; integral membrane proteins; ion channel; protein structure and function; structural biology; structure-guided drug discovery; transporter; ubiquitin ligase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computational Biology / methods*
  • Crystallography
  • Databases, Protein*
  • Drug Discovery
  • Magnetic Resonance Spectroscopy
  • Microscopy, Electron
  • Protein Conformation
  • Proteins / chemistry*
  • User-Computer Interface

Substances

  • Proteins