The improvement of activity of electrocatalysts lies in the increment of the density of active sites or the enhancement of intrinsic activity of each active site. A common strategy to realize dual active sites is the use of bimetal compound catalysts, where each metal atom contributes one active site. In this work, a new concept is presented to realize dual active sites with tunable electron densities in monometal compound catalysts. Dual Co2+ tetrahedral (Co2+ (Td )) and Co3+ octahedral (Co3+ (Oh )) coordination active sites are developed and adjustable electron densities on the Co2+ (Td ) and Co3+ (Oh ) are further achieved by phosphorus incorporation (P-Co9 S8 ). The experimental results and density functional theory calculations show that the nonmetal P doping can systematically modulate charge density of Co2+ (Td ) and Co3+ (Oh ) in P-Co9 S8 and simultaneously improve the electrical conductivity of Co9 S8 , which substantially enhances oxygen evolution reaction performance of P-Co9 S8 .
Keywords: catalytic sites; electron modulation; nanocages; oxygen evolution reaction; phosphorus doping.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.