Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers were used for GWAS analyses. For the six root traits with significant inoculation effect, the GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment, in which only two were overlapped with the 22 found for N stress only. Most were found by the heterozygous (dis)advantage model and were more related to exclusive gene ontology terms. Interestingly, the candidate genes around the significant SNPs found for the maize-A. brasilense association were involved in different functions previously described for PGPB in plants (e.g. signaling pathways of the plant's defense system and phytohormone biosynthesis). Our findings are a benchmark in the understanding of the genetic variation among maize hybrids for the association with A. brasilense and reveal the potential for further enhancement of maize through this association.