Objective: A sensorimotor network structural phenotype predicted motor task performance in a previous study in Huntington's disease (HD) gene carriers. We investigated in the visual network whether structure - function - behaviour relationship patterns, and the effects of the HD mutation, extended beyond the sensorimotor network.
Methods: We used multimodal visual network MRI structural measures (cortical thickness and white matter connectivity), plus visual evoked potentials and task performance (Map Search; Symbol Digit Modalities Test) in healthy controls and HD gene carriers.
Results: Using principal component (PC) analysis, we identified a structure - function relationship common to both groups. PC scores differed between groups indicating white matter disorganization (higher RD, lower FA) and slower, and more disperse, VEP signal transmission (higher VEP P100 latency and lower VEP P100 amplitude) in HD than controls while task performance was similar.
Conclusions: HD may be associated with reduced white matter organization and efficient visual network function but normal task performance.
Significance: These findings indicate that structure - function relationships in the visual network, and the effects of the HD mutation, share some commonalities with those in the sensorimotor network. However, implications for task performance differ between the two networks suggesting the influence of network specific factors.
Keywords: Principal component analysis; Structural MRI; Tractography; Visual evoked potentials.
Copyright © 2019. Published by Elsevier B.V.