Interacting with a cluttered and dynamic environment requires making decisions about visual information at relevant locations while ignoring irrelevant locations. Typical adults can do this with covert spatial attention: prioritizing particular visual field locations even without moving the eyes. Deficits of covert spatial attention have been implicated in developmental dyslexia, a specific reading disability. Previous studies of children with dyslexia, however, have been complicated by group differences in overall task ability that are difficult to distinguish from selective spatial attention. Here, we used a single-fixation visual search task to estimate orientation discrimination thresholds with and without an informative spatial cue in a large sample (N = 123) of people ranging in age from 5 to 70 years and with a wide range of reading abilities. We assessed the efficiency of attentional selection via the cueing effect: the difference in log thresholds with and without the spatial cue. Across our whole sample, both absolute thresholds and the cueing effect gradually improved throughout childhood and adolescence. Compared to typical readers, individuals with dyslexia had higher thresholds (worse orientation discrimination) as well as smaller cueing effects (weaker attentional selection). Those differences in dyslexia were especially pronounced prior to age 20, when basic visual function is still maturing. Thus, in line with previous theories, literacy skills are associated with the development of selective spatial attention.
Keywords: Development; Dyslexia; Spatial attention; Visual perception.
Copyright © 2019 Elsevier Ltd. All rights reserved.