Cold stress adversely affects plant growth, development, and crop productivity and quality. Plants employ cold acclimation strategy to protect them from cold damage. The transcription-factor-CBF-dependent cold signaling pathway plays a key role in plant cold acclimation. However, how this signaling pathway is dynamically and precisely regulated remains unknown. Here, we report that two U-box type E3 ubiquitin ligases, PUB25 and PUB26, positively regulate freezing tolerance in Arabidopsis thaliana. Both PUB25 and PUB26 poly-ubiquitinate MYB15, a transcriptional repressor of the CBF-dependent cold signaling pathway, leading to MYB15 degradation and thus enhanced CBF expression under cold stress. Furthermore, cold-activated OST1 specifically phosphorylates PUB25 and PUB26 at conserved threonine residues, enhancing their E3 activity and facilitating the cold-induced degradation of MYB15. Our results thus unravel the regulatory role of the OST1-PUB25/26 module in regulating the duration and amplitude of the cold response by controlling the homeostasis of the negative regulator MYB15.
Keywords: Arabidopsis; CBF genes; E3 ligases PUB25/26; MYB15; cold response; protein kinase OST1.
Copyright © 2019 Elsevier Inc. All rights reserved.