Novel sunscreen products based on bioadhesive/gel systems that can prevent the skin penetration behaviors of UV filters have attracted increasing attention in recent years. However, integration is very difficult to achieve and control on the wet surface of the skin under sweaty/dynamic physiological conditions, resulting in functional failure. Herein, we demonstrated the fabrication of a novel dual-network hydrogel sunscreen (DNHS) based on poly-γ-glutamic acid (γ-PGA) and tannic acid (TA), which demonstrated prominent UV protection properties across broad UVA and UVB regions (360-275 nm). Due to a three-dimensional network microstructure and a highly hydrated nature that mimics the extracellular matrix of natural skin, DNHS can perfectly match the skin surface without irritation and sensitization. In addition, the intermolecular hydrogen bond interactions of γ-PGA and TA provide an important driving force for coacervation, which endows the DNHS with remarkable self-recovery properties (within 60 s). Moreover, due to the multiple interfacial interactions between γ-PGA/TA and the protein-rich skin tissue surfaces, DNHS simultaneously possesses excellent skin-integration and water-resistance capacities, and it can be readily removed on demand. Our results highlight the potential of the DNHS to be used in next-generation sunscreens by providing long-term and stable UV protection functions even under sweaty/dynamic physiological conditions.
Keywords: anti-UV; dual-network; hydrogel; poly-γ-glutamic acid (γ-PGA); self-recovery; skin-integration; sunscreen; tannic acid (TA).