Photocatalysts are widely used for the elimination of organic contaminants from waste-water and H2 evaluation by water-splitting. Herein, the nanohybrids of lanthanum (La) and selenium (Se) co-doped bismuth ferrites with graphene oxide were synthesized. A structural analysis from X-ray diffraction confirmed the transition of phases from rhombohedral to the distorted orthorhombic. Scanning electron microscopy (SEM) revealed that the graphene nano-sheets homogenously covered La-Se co-doped bismuth ferrites nanoparticles, particularly the (Bi0.92La0.08Fe0.50Se0.50O3-graphene oxide) LBFSe50-G sample. Moreover, the band-gap nanohybrids of La-Se co-doped bismuth ferrites were estimated from diffuse reflectance spectra (DRS), which showed a variation from 1.84 to 2.09 eV, because the lowering of the band-gap can enhance photocatalytic degradation efficiency. Additionally, the photo-degradation efficiencies increased after the incorporation of graphene nano-sheets onto the La-Se co-doped bismuth ferrite. The maximum degradation efficiency of the LBFSe50-G sample was up to 80%, which may have been due to reduced band-gap and availability of enhanced surface area for incoming photons at the surface of the photocatalyst. Furthermore, photoluminescence spectra confirmed that the graphene oxide provided more electron-capturing sites, which decreased the recombination time of the photo-generated charge carriers. Thus, we can propose that the use of nanohybrids of La-Se co-doped bismuth ferrite with graphene oxide nano-sheets is a promising approach for both water-treatment and water-splitting, with better efficiencies of BiFeO3.
Keywords: band-gap; graphene oxide; nanohybrids; sol-gel; water-treatment.