Increasing evidence has revealed that microRNAs (miRNAs) play vital roles in breast cancer (BC) prognosis. Thus, we aimed to identify recurrence-related miRNAs and establish accurate risk stratification system in BC patients. A total of 381 differentially expressed miRNAs were confirmed by analyzing 1044 BC tissues and 102 adjacent normal samples from The Cancer Genome Atlas (TCGA). Then, based on the association between each miRNAs and disease-free survival (DFS), we identified miRNA recurrence-related signature to construct a novel prognostic nomogram using Cox regression model. Target genes of the four miRNAs were analyzed via Gene Ontology and KEGG pathway analyses. Time-dependent receiver operating characteristic analysis indicated that a combination of the miRNA signature and tumor-node-metastasis (TNM) stage had better predictive performance than that of TNM stage (0.710 vs 0.616, P<0.0001). Furthermore, risk stratification analysis suggested that the miRNA-based model could significantly classify patients into the high- and low-risk groups in the two cohorts (all P<0.0001), and was independent of other clinical features. Functional enrichment analysis demonstrated that the 46 target genes mainly enrichment in important cell biological processes, protein binding and cancer-related pathways. The miRNA-based prognostic model may facilitate individualized treatment decisions for BC patients.
Keywords: breast cancer; microRNA; model; recurrence; survival.