T cells exposed to persistent antigen in the inflammatory environment of chronic infections often show progressive loss of effector functions, high expression of inhibitory receptors and distinct transcriptional programs. T cells in this functional state are termed "exhausted" and T cell exhaustion is associated with inefficient control of infections. A remarkably similar scenario has been described for B cells during chronic infections in humans, including malaria, in which case a subpopulation of atypical memory B cells (MBCs) greatly expands and these MBCs show attenuation of B cell receptor signaling, loss of the B cell effector functions of antibody and cytokine production, high expression of inhibitory receptors and distinct transcriptional profiles. The expansion of these MBCs is also associated with inefficient control of infections. Despite the similarities with exhausted T cells we speculate that at least in malaria, atypical MBCs may not be exhausted but rather may be functional, possibly even beneficial. Our recent results suggest that we simply may not have known how to ask an atypical MBC to function. Thus, exhaustion may not be in the human B cell's vocabulary, at least not in malaria.
Keywords: B cell receptor; atypical memory B cells; chronic inflammation; immune exhaustion; malaria.
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.