Metagenomic Next-Generation Sequencing for Identification and Quantitation of Transplant-Related DNA Viruses

J Clin Microbiol. 2019 Nov 22;57(12):e01113-19. doi: 10.1128/JCM.01113-19. Print 2019 Dec.

Abstract

Infections with DNA viruses are frequent causes of morbidity and mortality in transplant recipients. This study describes the analytical and clinical performance characteristics of the Arc Bio Galileo Pathogen Solution, an all-inclusive metagenomic next-generation sequencing (mNGS) reagent and bioinformatics pipeline that allows the simultaneous quantitation of 10 transplant-related double-stranded DNA (dsDNA) viruses (adenovirus [ADV], BK virus [BKV], cytomegalovirus [CMV], Epstein-Barr virus [EBV], human herpesvirus 6A [HHV-6A], HHV-6B, herpes simplex virus 1 [HSV-1], HSV-2, JC virus [JCV], and varicella-zoster virus [VZV]). The mNGS 95% limit of detection ranged from 14 copies/ml (HHV-6) to 191 copies/ml (BKV), and the lower limit of quantitation ranged from 442 international units (IU)/ml (EBV) to 661 copies/ml (VZV). An evaluation of 50 residual plasma samples with at least one DNA virus detected in prior clinical testing showed a total percent agreement of mNGS and quantitative PCR (qPCR) of 89.2% (306/343), with a κ statistic of 0.725. The positive percent agreement was 84.9% (73/86), and the negative percent agreement was 90.7% (233/257). Furthermore, mNGS detected seven subsequently confirmed coinfections that were not initially requested by qPCR. Passing-Bablok regression revealed a regression line of y = 0.953x + 0.075 (95% confidence interval [CI] of the slope, 0.883 to 1.011; intercept, -0.100 to 0.299), and Bland-Altman analysis (mNGS - qPCR) showed a slight positive bias (0.28 log10 concentration; 95% limits of agreement, -0.62 to 1.18). In conclusion, the mNGS-based Galileo pipeline demonstrates analytical and clinical performance comparable to that of qPCR for transplant-related DNA viruses.

Keywords: DNA sequencing; genomics; transplant infectious diseases; virology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods
  • DNA Virus Infections / diagnosis*
  • DNA Viruses / classification
  • DNA Viruses / genetics
  • DNA Viruses / isolation & purification*
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Metagenomics / methods*
  • Molecular Diagnostic Techniques / methods*
  • Sensitivity and Specificity
  • Transplantation / adverse effects*